
Dynamic Programming 2
Problem Solving Club
November 23, 2016

What is dynamic programming?

● Dynamic programming requires recursive thinking
● Wikipedia: “a method for solving a complex problem by

breaking it down into a collection of simpler subproblems,
solving each of those subproblems just once, and storing
their solutions – ideally, using a memory-based data
structure”

● Overall, a bit hard to define

Longest Common Subsequence (LCS)
Review from last week’s meeting

Given two strings:

X = bacda

Y = dbdc

LCS(X, Y) = ?

LCS-length(X, Y) = ?

General steps to solving a DP problem
1. Formulate the problem in terms of a mathematical function

○ Each input corresponds to exactly one output
○ The output of the function depends only on its inputs (no side effects)
○ What would be a function for LCS-length?
○ LCS-length : (X : string, Y : string) -> integer

2. Find a recurrence formula for the problem in terms of smaller subproblem(s)
○ What is the recurrence for LCS-length?
○ LCS-length(Xa, Ya) = LCS-length(X, Y) + 1
○ LCS-length(Xa, Yb) = max[LCS-length(Xa, Y), LCS-length(X, Yb)]

3. Recognize and solve the base cases
○ What are the base cases for LCS-length?
○ LCS-length(X, ε) = LCS-length(ε, Y) = 0

4. Code it

Coding
● Figure how many total states your function has
● This determines how much memory your program will need
● How many states does LCS-length have?

○ LCS-length : (X : string, Y : string) -> integer
○ LCS-length(Xa, Ya) = LCS-length(X, Y) + 1
○ LCS-length(Xa, Yb) = max[LCS-length(Xa, Y), LCS-length(X, Yb)]
○ LCS-length(X, ε) = LCS-length(ε, Y) = 0

● In this particular recurrence, X and Y are always prefixes of the original string
● For better runtime performance, define an alternative recurrence:

○ LCS-length2 : (x : integer, y : integer) -> integer
○ LCS-length2(x, y) = LCS-length2(x-1, y-1) + 1 if X[x] = Y[y]

 = max[LCS-length2(x, y-1), LCS-length2(x-1, y)] otherwise
○ LCS-length2(x, 0) = LCS-length2(0, y) = 0

● Is this a mathematical function?

Coding Bottom-up
● For bottom-up implementation, you must determine a correct iteration order

that processes smaller subproblems before larger ones
○ LCS-length2 : (x : integer, y : integer) -> integer
○ LCS-length2(x, y) = LCS-length2(x-1, y-1) + 1 if X[x] = Y[y]

 = max[LCS-length2(x, y-1), LCS-length2(x-1, y)] otherwise
○ LCS-length2(x, 0) = LCS-length2(0, y) = 0

● What would be a correct iteration order for LCS-length2?

● string X, Y
● int dp[|X| + 1][|Y| + 1]
● for 0 ≤ x ≤ |X|

○ for 0 ≤ y ≤ |Y|
■ if x == 0 or y == 0: dp[x][y] = 0
■ else if X[x] == Y[y]: dp[x][y] = dp[x-1][y-1] + 1
■ else: dp[x][y] = max(dp[x][y-1] + dp[x-1][y])

● What do we print as the answer?

Coding Top-down
● For top-down implementation, it is not necessary to find an iteration order
● Allow the computer to do it for you (like Excel, functional programming)
● Implement a function in your program that matches the mathematical function

○ LCS-length2 : (x : integer, y : integer) -> integer
○ LCS-length2(x, y) = LCS-length2(x-1, y-1) + 1 if X[x] = Y[y]

 = max[LCS-length2(x, y-1), LCS-length2(x-1, y)] otherwise
○ LCS-length2(x, 0) = LCS-length2(0, y) = 0

● string X, Y
● int dp[|X| + 1][|Y| + 1] = initialized to -1
● int lcs(int x, int y)

○ int ans
○ if dp[x][y] != -1: ans = dp[x][y]
○ else if x == 0 or y == 0: ans = 0
○ else if X[x] == Y[y]: ans = lcs(x-1, y-1) + 1
○ else: ans = max(lcs(x, y-1) + lcs(x-1, y))
○ dp[x][y] = ans
○ return ans

Coding: Bottom-up vs. Top down
● string X, Y
● int dp[|X| + 1][|Y| + 1]
● for 0 ≤ x ≤ |X|

○ for 0 ≤ y ≤ |Y|
■ if x == 0 or y == 0: dp[x][y] = 0
■ else if X[x] == Y[y]: dp[x][y] = dp[x-1][y-1] + 1
■ else: dp[x][y] = max(dp[x][y-1] + dp[x-1][y])

● string X, Y
● int dp[|X| + 1][|Y| + 1] = initialized to -1
● int lcs(int x, int y)

○ int ans
○ if dp[x][y] != -1: ans = dp[x][y]
○ else if x == 0 or y == 0: ans = 0
○ else if X[x] == Y[y]: ans = lcs(x-1, y-1) + 1
○ else: ans = max(lcs(x, y-1) + lcs(x-1, y))
○ dp[x][y] = ans
○ return ans

Coding: Bottom-up vs. Top down
What might be some reasons to prefer one method over the other?

● Runtime performance
○ A complicated issue
○ Bottom-up computes all states, while top-down only computes relevant states
○ If most states are visited, top-down is usually slower than bottom-up due to call stack
○ Top-down approach can cause a stack overflow

● Ease of coding
○ Bottom-up requires determination of the iteration order
○ For some types of problems (e.g. travelling salesman), the iteration order is non-obvious

● Personal preference

