Graphing
Problem Solving Club
Oct 26, 2016

What 1s a graph?

.A graph 1s a set of vertices and edges

.Edges can be:
— One-directional (directed) or bidirectional

- Weighted or unweighted

Graph representation #1
Adjacency matrix

B

C

D

12

60

20

32

o g(a|w| >

-What is the main problem?

.Large waste of space. What 1s

the space usage in terms of V
and E?

.Requires O(V?) space

Graph representation #2
Adjacency list
A: {(C, 12), (D, 60)}
B: {(A, 10)}
.C: {(B, 20), (D, 32)}
D: {}
E: {(A,7)}

-What are some advantages over adjacency
matrix?

.Uses less space. Faster to iterate over graph.

-What are some disadvantages?

Graph representation #3
Edge list

(A, C, 12), (A, D, 60), (B, A, 10),
(C, B, 20), (C, D, 32), (E, A, 7)}

-Why would you use this?

-Mainly for specialized algorithms,
like Kruskal’s (minimum spanning
tree)

-What are the disadvantages?

.Cannot easily find neighbors, or 1f
edge exists.

Summary: Graph representations

Description

When to use in programming
contest

Adjacency matrix Store the graph in a matrix. V <2000
Requires O(V?) space.
Adjacency list For each vertex, store a list of | V >2000
adjacent vertices. Requires
O(V+E) space.
Edge list For each edge, store an entry | When required by a specific

1n a list.

algorithm, like Kruskal’s
(minimum spanning tree)

Breadth-first search (BFS)

.A common problem 1n graphs 1s shortest path. What 1s
the shortest path to get between two vertices?

.Single source shortest path (SSSP) problem: From a
given vertex, what 1s the shortest path to every other
vertex 1n the graph?

.BFS 1s an algorithm that solves this on an unweighted
graph

It also determines which other vertices are reachable
from a given vertex

Breadth-first search (BFS)

.The figure shows the order

of vertex traversal in BFS 1\
2° (3) 4
.Two data structures are 5/ ('5 ;\8
required for BFS: a queue /| RN
9) 10 11 12

and a boolean array.

.The queue determines the
order to visit vertices, and
the boolean array keeps
track of which vertices
have already been visited

Breadth-first search (BFS)

First, push the root vertex into

the queue. Mark it as visited. i / ; \4
-While queue is nonempty: 5/ : ;\8
— Pop the front of the queue. 9/ 1'0 1'1\12
Let this vertex be v.
~ Go through all edges of v.

Let (v, w) be an edge.

. If w 1s not visited yet,
push 1t onto the back of
the queue. Mark w as
visited.

